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Key points

● Declarative configuration? Doesn’t it Keycloak support already?!
● Why all the fuss around it?
● Current limitations.
● How can it be improved?
● A good declarative API? How it could look like in Keycloak?
● What is the Keycloak team brewing around this?
● What about Operator CRs?
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Doesn’t it Keycloak support already?!
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Declarative configuration: why is it important?

● Configuration as code.
● I want to tell Keycloak my desired configuration state.

○ Not steps how to do it.

● I want to be able to update my desired configuration.
○ Let Keycloak figure out the rest.

● I want my configuration to be portable.
○ I take my config and use it in another Keycloak instance (dev/stage env, …).

● I want to leverage 3rd party tools to help me manage my configuration.
○ Version control, Kubernetes Custom Resources, templating, …
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Realm Configuration Management Tools Survey

https://www.keycloak.org/2024/09/realm-config-management-tools-survey-results.html

https://www.keycloak.org/2024/09/realm-config-management-tools-survey-results.html
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What’s the issue with that?

● Admin interface – REST API only.
● No real issue with that per se. But…
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A simple Client with a Client Role

2 requests are needed!?
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Client Protocol Mapper
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Client Protocol Mapper
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Using Admin REST API for declarative configuration

● Requires multiple requests to configure a single logical entity.
○ Requests need to be in correct order and reflect results of previous requests like IDs.
○ The API client needs to understand the API semantics.

● Poorly documented → weak contract → extremely fragile for external clients.
● Inconsistent.
● No clear distinction between user provided values and default values.
● Not really user friendly structure → hard to maintain.
● Missing validations.
● Resource ownership problem.



But how can we improve that?
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Anything beyond this point is
a sneak peek of WIP and subject to change

!
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● Backed by a relational DB.
○ File based Map Store was initially also considered.

● Idempotent.
● Stateless from the client perspective.
● Generic, client agnostic.
● User friendly (DTOs, structure, …).
● Cloud-native friendly.
● Usable at the runtime.
● Clear ownership of declaratively configured resources.

Declarative API in Keycloak
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Files?

● Natural approach: files first.
○ Keycloak loads files and persist configuration in the DB

● When are the files loaded exactly?
○ On startup?
○ Actively watched?

● What if there are more Keycloak instances?
○ What if the files differ between instances?
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REST API? Again?!

● A new API, built from ground up.
● A well-designed REST API ticks all the boxes:

○ Idempotent, stateless, client agnostic.
○ User friendly.
○ Cloud-native friendly.
○ Runtime support.
○ …

● Something that Keycloak knows very well.
● Current Admin REST API needs a revamp anyway.
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Stateless

● Client should not know anything about current resources state.
○ Should not need to fetch the resource.

● Logical units are a single resource.
○ E.g. Client Roles should be part of Client, not a separate resource.

● Using a single HTTP verb (PUT) for create and update.
○ Ensures idempotency.
○ Overwrites whole resource if exists.
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Access Control

● Declarative config is not the single “config source”.
● Leverage Fine Grain Admin Permissions.
● Declarative config uses a dedicated Service Account for authentication.
● The Service Account is associated with each resource owned by the 

declarative config.
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Defaults

● Explicit defaults vs. desired state.
● Defaults not always persisted.
● Cleaner GET results.

○ Not strictly needed for declarative config, but good for the overall API design.
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How do files fit into this?

● REST API as an abstraction layer above file system.

Syncer
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Operator CRs

● Just another syncer.
● CRDs generated from the API representations.
● Initially Client CR only.
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To sum it up…

● A new REST API for native declarative configuration.
● New resource representations.
● Baseline for a new Admin REST API.
● Operator CRs leveraging this.
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What’s next

● Prototyping a PoC.
○ Goal is to create a blueprint for an ideal Admin REST API.

● Production ready MVP covering selected use cases for Client.
○ Focused on declarative config and Operator CR.

● Iteratively extending the API.
● Ultimate goal is to allow full migration from the current Admin REST API.
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How to get involved

● https://github.com/keycloak/keycloak/discussions/33049
● #keycloak-dev on slack.cncf.io
● keycloak-dev@googlegroups.com

https://github.com/keycloak/keycloak/discussions/33049
http://slack.cncf.io
mailto:keycloak-dev@googlegroups.com


Questions?
Feedback?


