
© Hitachi, Ltd. 2024. All rights reserved.

Keycloak's Updates on Emerging Paradigm of Identity

and Compliance with Security Specifications

KeyConf 24
@ARCOTEL Kaiserwasser, Vienna, Austria

Hitachi, Ltd.

OSS Solution Center

September 19, 2024

Takashi Norimatsu

1© Hitachi, Ltd. 2024. All rights reserved.

Self Introduction

◼ Contributing security features to Keycloak since 2018.

• W3C Web Authentication API support (Passkeys authentication)

• Security features support (e.g., RFC 7636 PKCE, RFC 8705 OAuth MTLS,
OIDC CIBA, RFC 9126 PAR, RFC 8032/8037 EdDSA, RFC 9449 DPoP,
RFC 9207 OAuth2 Authz Server Issuer Identification)

• API security profiles support (e.g., FAPI 1.0 Baseline, FAPI 1.0 Advanced,
FAPI-CIBA, FAPI 2.0 Baseline, FAPI 2.0 Message Signing, OAuth 2.1)

Takashi Norimatsu (tnorimat in GitHub) :

Keycloak maintainer (since Oct 2021),

Technical lead of Keycloak community “OAuth SIG”,

Senior OSS Specialist, Hitachi, Ltd., Japan

© Hitachi, Ltd. 2024. All rights reserved.

1. Emerging Paradigm of Identity : OID4VCI

2. Compliance with Security Specifications

Contents

2

3© Hitachi, Ltd. 2024. All rights reserved.

1. Emerging Paradigm of Identity : OID4VCI

4© Hitachi, Ltd. 2024. All rights reserved.

Verifiable Credentials : OID4VCI

*2 : https://identity.foundation/jwt-vc-presentation-profile/

*3 : https://www.ietf.org/archive/id/draft-ietf-oauth-selective-disclosure-jwt-07.html

*4 : https://www.w3.org/TR/vc-data-model/

*5: https://www.iso.org/standard/69084.html

*6 : https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html

Keycloak’s community is working on supporting OID4VCI.

Credential Formats :

• JWT VC (*2)

Standardized by Decentralized Identity Foundation (DIF)

• Selective Disclosure JWT (SD-JWT) (*3)

Standardized by Internet Engineering Task Force (IETF)

• Verifiable Credentials Data Model (VCDM) (*4)

Standardized by World Wide Web Consortium (W3C)

• ISO.18013-5 Mobile driving license (mDL) (*5)

Standardized by International Organization for Standardization (ISO)

Credential Issuance Protocol

• OpenID for Verifiable Credential Issuance (OID4VCI) (*6)

Standardized by OpenID Foundation (OIDF)

Issuance Flows :

• Pre-authorization code flow

• Authorization code flow

Motivation :

The European Commission released “The European Digital Identity Wallet Architecture
and Reference Framework (*1)” which describes that OID4VCI MUST be implemented as
an Issuance Protocol.

Keycloak can be used as an Issuer in this framework if Keycloak supports OID4VCI.

*1 : https://digital-strategy.ec.europa.eu/en/library/european-digital-identity-
wallet-architecture-and-reference-framework

https://identity.foundation/jwt-vc-presentation-profile/
https://www.ietf.org/archive/id/draft-ietf-oauth-selective-disclosure-jwt-07.html
https://www.w3.org/TR/vc-data-model/
https://www.iso.org/standard/69084.html
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0.html
https://digital-strategy.ec.europa.eu/en/library/european-digital-identity-wallet-architecture-and-reference-framework
https://digital-strategy.ec.europa.eu/en/library/european-digital-identity-wallet-architecture-and-reference-framework

5© Hitachi, Ltd. 2024. All rights reserved.

Verifiable Credentials Data Model v2.0 (*1)

*1 : “Verifiable Credentials Data Model v2.0” https://www.w3.org/TR/vc-data-model-2.0/

Issuer

Verifier

Holder

(Wallet)
Subject

Verifiable
Credential

Verifiable
Presentation

6© Hitachi, Ltd. 2024. All rights reserved.

Verifiable Credentials Data Model v2.0

Issuer:= asserting claims about one or
more subjects, creating a verifiable
credential from these claims, and
transmitting the verifiable credential to a
holder. (quoted from *1)

Holder:= possessing one or more
verifiable credentials and generating
verifiable presentations from them.

A holder is often, but not always, a subject
of the verifiable credentials they are
holding. (quoted from *1)

Verifier:= receiving one or more verifiable
credentials, optionally inside a verifiable
presentation for processing.

Other specifications might refer to this
concept as a relying party. (quoted from *1)

*1 : “Verifiable Credentials Data Model v2.0” https://www.w3.org/TR/vc-data-model-2.0/

Issuer

Verifier

Holder

(Wallet)
Subject

Verifiable
Credential

Verifiable
Presentation

Verifiable Credential (VC):= a
tamper-evident credential that has
authorship that can be
cryptographically verified.

Verifiable credentials can be used
to build verifiable presentations,
which can also be cryptographically
verified. (quoted from *1)

Verifiable Presentation (VP):= a
tamper-evident presentation
encoded in such a way that
authorship of the data can be
trusted after a process of
cryptographic verification. (quoted from

*1)

Subject:= A thing about which
claims (an assertion made about
the subject) are made. (quoted from *1)

7© Hitachi, Ltd. 2024. All rights reserved.

Verifiable Credentials

OpenID for Verifiable Credential
Issuance (OID4VCI):= Defining an
API that is used to issue Verifiable
Credentials. (quoted from *2)

*1 :
https://github.com/Keycloak/Keycloak
/issues/25936

*2 : https://openid.net/specs/openid-
4-verifiable-credential-issuance-
1_0.html

Keycloak’s community
is working on
supporting OID4VCI.
(*1)

Issuer

Verifier

Holder

(Wallet)
Subject

Verifiable
Credential

Verifiable
Presentation

OID4VCI

OID4VCI

https://github.com/keycloak/keycloak/issues/25936
https://github.com/keycloak/keycloak/issues/25936

8© Hitachi, Ltd. 2024. All rights reserved.

Verifiable Credentials

OpenID for Verifiable Credential
Issuance (OID4VCI):= Defining an
API that is used to issue Verifiable
Credentials. (quoted from *2)

Self-Issued OpenID Provider v2
(SIOPv2) := An OpenID Provider
controlled by the End-User.
(quoted from *3)

OpenID for Verifiable
Presentations (OID4VP) :=
Defining a mechanism on top of
OAuth 2.0 that enables
presentation of Verifiable
Credentials as Verifiable
Presentations. (quoted from *4)

*1 :
https://github.com/Keycloak/Keycloak
/issues/25936

*2 : https://openid.net/specs/openid-
4-verifiable-credential-issuance-
1_0.html

*3 : https://openid.net/specs/openid-
connect-self-issued-v2-1_0.html

*4 : https://openid.net/specs/openid-
4-verifiable-presentations-1_0.html

Keycloak’s community
is working on
supporting OID4VCI.
(*1)

Issuer

Verifier

Holder

(Wallet)
Subject

Verifiable
Credential

Verifiable
Presentation

OID4VCI

SIOPv2

OID4VP

OID4VCI

OID4VP

https://github.com/keycloak/keycloak/issues/25936
https://github.com/keycloak/keycloak/issues/25936
https://github.com/keycloak/keycloak/issues/25936

9© Hitachi, Ltd. 2024. All rights reserved.

The Current Keycloak’s Support for OID4VCI

OID4VC Support - General

OID4VCI-supported Keycloak’s version 25.0.0 or later

OID4VCI support feature level Experimental

Referred Version of OID4VCI

specification

Implementer’s

Draft (draft 13)

VC Issuance Flow

Pre-Authorized Code Flow

Authorized Code Flow

Authorization Request Parameter

scope

authorization_details (RFC 9396 RAR)

issuer_state

VC Issuance Variation

Immediate Credential Issuance

Deferred Credential Issuance

Batch Credential Issuance

VC Issuance Proof (Key Binding)

jwt (SD-JWT)

cwt

ldp_vp (VCDM)

OID4VC Management/Administration

Admin REST API direct access

Admin CLI (kcadm)

Admin Console

: will be supported from Keycloak 26 or later

VC Format

SD-JWT VC (IETF)

JWT VC (DIF)

LDP VC (W3C)

mDL (ISO.18013-5)

VC Credential Offer

Same-Device

Cross-Device

10© Hitachi, Ltd. 2024. All rights reserved.

Components for OID4VCI in Keycloak (25.0.0)

OID4VCI Protocol Mapper

OID4VCI Client

Signing Service
Provider

Realm

Provider ID

0..*

Attributes Issuer DID
1 1

Key Provider
0..*

0..*
use

Algorithm Type

Attributes1 0..*

…

Credential
Configuration

Format

Scope

Claims

…Supported Credential Type

Protocol: oid4vc

Protocol: oid4vc

SD-JWT

JWT_VC

LDP_VC

0..*

For SD-JWT VC
(by IETF)

For JWT VC
(by DIF)

For LDP VC
(by W3C)

Context put context in VCDM

Static Claim put hard-coded claim

Subject ID put subject id claim in VCDM

User Role put user’s role claim

Credential Type
put credential type claim (“vct”)
in SD-JWT VC

User Attribute put user’s attribute

match

P
u

t
in

 “
c
la

im
s
”

c
la

im
 (

u
s
e

r
in

fo
)

P
u

t
in

V

C
 i
ts

e
lf

c
la

im

“iss” claim in
SD-JWT VC

match

11© Hitachi, Ltd. 2024. All rights reserved.

Components for OID4VCI – Signing Service Provider

Represented as a realm component model.

Ex. SD-JWT Signing Service Provider(*)

* : https://github.com/adorsys/keycloak-ssi-deployment/blob/main/signing_service-test-credential.json

12© Hitachi, Ltd. 2024. All rights reserved.

Components for OID4VCI – Credential Configuration

Represented as client attributes.

* : https://github.com/adorsys/keycloak-ssi-deployment/blob/main/signing_service-test-credential.json

Formal JSON representation
Import/Export Keycloak JSON representation (*)

Hierarchized by “.”(dot).

13© Hitachi, Ltd. 2024. All rights reserved.

Components for OID4VCI – OID4VCI Protocol Mapper

* : https://github.com/adorsys/keycloak-ssi-deployment/blob/main/signing_service-test-credential.json

Protocol Mapper (User Attribute) (*)OID4VC Client’s Credential Configuration(*)

Digest in a VC

14© Hitachi, Ltd. 2024. All rights reserved.

Components for OID4VCI – VC (SD-JWT)

* : using https://github.com/adorsys/keycloak-ssi-deployment

Issuer-signed JWT (decoded)Ex. SD-JWT VC issued by Keycloak (*)

Issuer DID

15© Hitachi, Ltd. 2024. All rights reserved.

Prerequisites for VC Issuance by Keycloak

0. Registering a user, a key provider, etc.

1. Registering Issuer De-centralized Identifier (DID)

2. Registering a signing service for a verifiable credential (VC)

3. Registering a client for OID4VC

4. Registering the client’s credential configurations

5. Registering the client’s protocol mappers

How to register : Admin CLI or Admin REST API direct access

(Admin Console cannot be used)

16© Hitachi, Ltd. 2024. All rights reserved.

Holder

as

OAuth 2.0
Resource Owner

Wallet

as

OAuth 2.0
Client

Credential Issuer

as

OAuth 2.0
Resource Server

Pre-Authorization Code Flow & Wallet-initiated & Same-device
Credential Offer

Token Issuer

as

OAuth 2.0
Authorization Server

17© Hitachi, Ltd. 2024. All rights reserved.

Pre-Authorization Code Flow & Wallet-initiated & Same-device
Credential Offer

0. [Prerequisite] A wallet makes a holder who is a subject of a VC do authentication and
authorization in Keycloak to get an access token.

1. The wallet gets credential issuer metadata to know supported credential configurations.

2. The wallet chooses one of supported credential configurations.

3. The wallet gets a credential offer URI (w/ the credential configuration chosen in step 2 and
the access token got in step 0).

4. The wallet gets a credential offer by accessing the credential offer URI in step 4 to receive
a pre-authorization code (w/ the access token got in step 0).

5. The wallet gets an access token for the VC in pre-authorization code flow (w/ the pre-
authorization code got in step 4).

6. The wallet gets the VC (w/ the access token for the VC got in step 5, and the credential
configuration chosen in step 2 as a credential identifier.

18© Hitachi, Ltd. 2024. All rights reserved.

Pre-Authorization Code Flow & Wallet-initiated & Same-device
Credential Offer (1 of 2)

Wallet / Holder Keycloak

Access token for bearer token authentication

0. [Prerequisite]Get an access token for bearer token authentication

Authentication and authorization by a holder

1. Get credential issuer metadata

GET …/.well-known/openid-credential-issuer

{“credential_configurations_supported” : {“cred01”: {…}, “cred02”: {…}, …}, …}2. Choose credential
configuration

-> choose “cred02” 3. Get credential offer URI

Authorization: Bearer

GET …/protocol/oid4vc/credential-offer-uri?credential_configuration_id=cred2

{“issuer”: “…/protocol/oid4vc/credential-offer/”, “nonce”: [nonce]}

4. Get credential offer

Authorization: Bearer

GET …/protocol/oid4vc/credential-offer/[nonce]

{“credential_configuration_ids”: [“cred02”], “grants”: {

"urn:ietf:params:oauth:grant-type:pre-authorized_code": {

“pre-authorized_code”: [pre-authorized_code]}}}

Create a user session
(holder) and client
session (wallet)

Bearer token authentication.

Find a user(holder) and
client(wallet).

Retrieve the user and client
session.

Bearer token authentication.

Find a user(holder) and
client(wallet).

Retrieve the user and client
session.

Keycloak’s original
process.
Keycloak does not
support Credential
Offer Endpoint
defined by OID4VCI
spec.

19© Hitachi, Ltd. 2024. All rights reserved.

Pre-Authorization Code Flow & Wallet-initiated & Same-device
Credential Offer (2 of 2)

Wallet / Holder Keycloak

5. Get access token for VC issuance

6. Get VC

Authorization: Bearer

POST …/protocol/oid4vc/credential

{“format”: [format], “credential_identifier”: “cred02”}

{“credential”: [VC]}

POST …/protocol/openid-connect/token

grant_type=urn:ietf:params:oauth:grant-type:pre-
authorized_code,

pre-authorization_code=[pre-authorized_code]
Token Endpoint

Access token for VC Issuance

Credential Endpoint

20© Hitachi, Ltd. 2024. All rights reserved.

Authorization Code Flow for VC Issuance

: It will be supported from Keycloak 26 or later

Holder

as

OAuth 2.0
Resource Owner

Wallet

as

OAuth 2.0
Client

Credential Issuer

as

OAuth 2.0
Resource Server

Token Issuer

as

OAuth 2.0
Authorization Server

21© Hitachi, Ltd. 2024. All rights reserved.

Authorization Code Flow for VC Issuance

0. [Prerequisite] An administrator registers client scopes corresponding to “scope” value of
supported credential configurations for a wallet and sets them to the wallet (as a client) in
Keycloak.

1. The wallet gets credential issuer metadata to know supported credential configurations.

2. The wallet chooses one of supported credential configurations.

3. The wallet send an authorization request to Keycloak (w/ scope parameter value
corresponding to a chosen credential configuration in step 2).

4. A holder does authentication and authorization (consent) in Keycloak.

5. The wallet receives an authorization response.

6. The wallet gets an access token for the VC.

7. The wallet gets the VC (w/ the access token for the VC got in step 6, and the credential
configuration chosen in step 2 as a credential identifier).

22© Hitachi, Ltd. 2024. All rights reserved.

Wallet / Holder Keycloak

0. [Prerequisite] Register credential configuration, client scope for the holder (client)

1. Get credential issuer metadata

GET …/.well-known/openid-credential-issuer

{“credential_configurations_supported” : {“cred01”: {…}, “cred02”: {…}, …}, …}2. Choose credential
configuration

-> choose “cred02”
3. Send authorization request

GET …/protocol/openid-connect/auth?scope=scope02&…

5. Receive authorization response

Authorization Code Flow for VC Issuance

{“credential_configurations_supported” : {“cred02”: {“scope”: “scope02”,”format”: “vc+sd-jwt”, …}}}

Authorization Endpoint
4. Authentication and authorization by a holder

code=[code]

6. Get access token for VC issuance

POST …/protocol/openid-connect/token

grant_type=authorization_code, code=[code]
Token Endpoint

Access token for VC Issuance

7. Get VC

Authorization: Bearer

POST …/protocol/oid4vc/credential

{“format”: [format], “credential_identifier”: “cred02”}

{“credential”: [VC]}
Credential Endpoint

Extract a scope parameter value from
access token.

Match it with the one included in the
wallet’s credential configuration
identified by “credential_identifier”.

23© Hitachi, Ltd. 2024. All rights reserved.

Pre-Authorization Code Flow & Wallet-initiated & Cross-device
Credential Offer

Wallet App in
Smartphone

Browser
in PC

Holder

as

OAuth 2.0
Resource Owner

Wallet

as

OAuth 2.0
Client

Credential Issuer

as

OAuth 2.0
Resource Server

Token Issuer

as

OAuth 2.0
Authorization Server

24© Hitachi, Ltd. 2024. All rights reserved.

Pre-Authorization Code Flow & Wallet-initiated & Cross-device
Credential Offer

QR code for a credential offer URI on Account Console

25© Hitachi, Ltd. 2024. All rights reserved.

Pre-Authorization Code Flow & Wallet-initiated & Cross-device
Credential Offer

1. Using a browser in a PC, a holder login Keycloak’s account console.

2. On the account console, the holder chooses one of supported credential configurations.

3. On the account console, the holder gets credential offer URI shown as QR code (w/ the
credential configuration chosen in step 2 and the access token got in step 1). wallet chooses
one of supported credential configurations.

4. A smartphone reads the QR code, and invokes an appropriate wallet app.

5. The wallet app a credential offer by accessing the credential offer URI in step 4 to receive
a pre-authorization code (w/ the access token got in step 1).

6. The wallet gets an access token for the VC in pre-authorization code flow (w/ the pre-
authorization code got in step 4).

7. The wallet gets the VC (w/ the access token for the VC got in step 5, and the credential
configuration chosen in step 2 as a credential identifier.

26© Hitachi, Ltd. 2024. All rights reserved.

Pre-Authorization Code Flow & Wallet-initiated & Cross-device
Credential Offer (1 of 2) (KC25)

Wallet App
(Smartphone)

Keycloak

Access token for bearer token authentication

1. Login account console

Authentication and authorization by a holder

3. Get credential offer URI as QR code

2. Choose credential
configuration

-> choose “cred02”

Authorization: Bearer

5. Get credential offer

Authorization: Bearer

GET …/protocol/oid4vc/credential-offer/[nonce]

{“credential_configuration_ids”: [“cred02”], “grants”: {

"urn:ietf:params:oauth:grant-type:pre-authorized_code": {

“pre-authorized_code”: [pre-authorized_code]}}}

Bearer token
authentication.

Find a user(holder) and
client(account-console).

Retrieve the user and client
session.

Bearer token
authentication.

Find a user(holder) and
client(wallet).

Retrieve the user and client
session.

Browser
(PC)

Account
Console

Verifiable Credentials page:

img/png QR code:

{“credential_configurations_supported” : {“cred01”: {…}, “cred02”: {…}, …}, …}

credential configuration: “cred02”

openid-credential-offer://?credential_offer_uri=…/protocol/oid4vc/credential-
offer/[nonce]

4. Read QR code,
invoke wallet app

Create a user session
(holder) and client
session (account-
console)

How to share

27© Hitachi, Ltd. 2024. All rights reserved.

Pre-Authorization Code Flow & Wallet-initiated & Cross-device
Credential Offer (2 of 2) (KC25)

Wallet App
(Smartphone)

Keycloak

6. Get access token for VC issuance

7. Get VC

Authorization: Bearer

POST …/protocol/oid4vc/credential

{“format”: [format], “credential_identifier”: “cred02”}

{“credential”: [VC]}

POST …/protocol/openid-connect/token

grant_type=urn:ietf:params:oauth:grant-type:pre-authorized_code,

pre-authorization_code=[pre-authorized_code]

Token Endpoint

Access token for VC Issuance

Credential Endpoint

28© Hitachi, Ltd. 2024. All rights reserved.

Pre-Authorization Code Flow & Wallet-initiated & Cross-device
Credential Offer (1 of 2) (KC26?)

Wallet App
(Smartphone)

Keycloak

Access token for bearer token authentication

1. Login account console

Authentication and authorization by a holder

3. Get credential offer URI as QR code

2. Choose credential
configuration

-> choose “cred02”

Authorization: Bearer

5. Get credential offer

GET …/protocol/oid4vc/credential-offer/[session code]

{“credential_configuration_ids”: [“cred02”], “grants”: {

"urn:ietf:params:oauth:grant-type:pre-authorized_code": {

“pre-authorized_code”: [pre-authorized_code]}}}

Bearer token
authentication.

Find a user(holder) and
client(account-console).

Retrieve the user and client
session.

Store the user and client
session by session code as
a key

Retrieve the user and client
session by session code

Browser
(PC)

Account
Console

Verifiable Credentials page:

img/png QR code:

{“credential_configurations_supported” : {“cred01”: {…}, “cred02”: {…}, …}, …}

credential configuration: “cred02”

openid-credential-offer://?credential_offer_uri=…/protocol/oid4vc/credential-
offer/[session code]

4. Read QR code,
invoke wallet app

Create a user session
(holder) and client
session (account-
console)

29© Hitachi, Ltd. 2024. All rights reserved.

Roadmap and Resources

◼ Goal: Keycloak can work as an issuer of VCs.

• Phase 1: supported as an experimental feature

• Phase 2: supported as a preview feature

• Phase 3: supported officially

◼ SIG : OAuth SIG

Mainly supports OAuth and its related specifications to Keycloak.

GitHub repository : https://github.com/keycloak/kc-sig-fapi (*1)

CNCF slack channel : #keycloak-oauth-sig

◼ Epic issue : Support OpenID for Verifiable Credentials(OID4VC)

• https://github.com/keycloak/keycloak/issues/25936

◼ Discussion: OpenID for Verifiable Credential Issuance

• https://github.com/keycloak/keycloak/discussions/17616

◼ Design: OpenID Verifiable for Credential Issuance

• https://github.com/keycloak/keycloak-community/blob/main/design/OID4VCI.md

◼ Guide: OpenID Verifiable for Credential Issuance

• https://github.com/adorsys/keycloak-ssi-deployment

In Progress

Completed by KC 25 Nov 2023 - Jun 2024

Jun 2024 -

https://github.com/keycloak/kc-sig-fapi

30© Hitachi, Ltd. 2024. All rights reserved.

Roadmap and Resources

◼ Current focus points

• How to determine which VC is issued

‒ Client-based to Scope-based

• Where we define the credentials

‒ Per Client (client attributes) to Per Realm (protocol mapper’s configuration or realm attributes)

• “Protocol” attribute of a client for OID4VCI

‒ Different Protocol (oid4vc) to Same Protocol (oidc)

Different Protocol : oidc client for OAuth2/OIDC while oid4vc client for OID4VCI

Same Protocol : oidc client for both OAuth2/OIDC and OID4VCI

KC25 implementation : Pre-authorization code flow : protocol = oid4vc

Authorization code flow : protocol = oidc

• VC Format

‒ mDL (ISO.18013-5)

• VC Issuance Proof (Key Binding)

‒ jwt (SD-JWT)

• Follow the latest version of OID4VCI specification (Implementer’s Draft)

‒ Draft version 13 (KC 25 followed) to 14 (current ver), …

31© Hitachi, Ltd. 2024. All rights reserved.

The Current Keycloak’s Support for OID4VCI

OID4VC Support - General

OID4VCI-supported Keycloak’s version 26.0.0 or later

OID4VCI support feature level Experimental

Referred Version of OID4VCI

specification

Implementer’s

Draft (draft 14)

VC Issuance Flow

Pre-Authorized Code Flow

Authorized Code Flow

Authorization Request Parameter

scope

authorization_details (RFC 9396 RAR)

issuer_state

VC Issuance Variation

Immediate Credential Issuance

Deferred Credential Issuance

Batch Credential Issuance

VC Issuance Proof (Key Binding)

jwt (SD-JWT)

cwt

ldp_vp (VCDM)

OID4VC Management/Administration

Admin REST API direct access

Admin CLI (kcadm)

Admin Console

: will be supported from Keycloak 26 or later

VC Format

SD-JWT VC (IETF)

JWT VC (DIF)

LDP VC (W3C)

mDL (ISO.18013-5)

VC Credential Offer

Same-Device

Cross-Device

32© Hitachi, Ltd. 2024. All rights reserved.

2. Compliance with Security Specifications

33© Hitachi, Ltd. 2024. All rights reserved.

Keycloak-supported specifications

Keycloak supported specifications in the following categories:
• OAuth 2.0

by Internet Engineering Task Force (IETF)
• OpenID Connect (OIDC)

by OpenID Foundation
• Financial-grade API Security Profiles (FAPI)

by OpenID Foundation
• Open Banking Security Profiles

by some country’s regulatory body
• Security Assertion Markup Language 2.0 (SAMLv2)

by Organization for the Advancement of Structured Information Standards (OASIS)
• User Managed Access (UMA)

by Kantara Initiative
• Web Authentication API (WebAuthn)

by World Wide Web Consortium (W3C)
• The Federal Information Processing Standard Publication 140-2 (FIPS 140-2)

by U.S. National Institute of Standards and Technology (NIST)

34© Hitachi, Ltd. 2024. All rights reserved.

Definition

• What “supporting a specification” means?
• Implementing features as the specification describes.

• How can we check whether Keycloak implements features as the specification
describes?
Passing a conformance test for a specification.

Some standardization body provides a conformance test for a specification.
 Certified by a standardization body that defines the specification.

Some standardization body certifies a product with the specification.
Ex. Certification Program
• NIST : FIPS 140-2,3
• FIDO Alliance : FIDO2 (WebAuthn, CTAP2)
• OIDF : OIDC and its related specifications, FAPI, Open Banking security

profiles

• How can we check that when no conformance test exists?
 … writing self-integration tests for the specification and passing them.

35© Hitachi, Ltd. 2024. All rights reserved.

Definition

Certified

Passed

Conformance Test

Conformance test
exist?

Certification program
exist?

Certified by
a standardization body

Passing
a conformance test

Writing integration tests
by myself

Passed Integration

Tests

Yes

Yes

No

Assurance of conformity

High

Low

“Supporting a specification” does not mean that Keycloak supports all features of the
specification. Especially, in “Passed Integrations Tests”.

“Supporting a specification” does not mean that Keycloak officially supports features of
the specification. Some supports of specifications are treated as “Preview” or
“Experimental” features.

In this slide, I decided that Keycloak supports a specification if Keycloak and the
specification match one of the three patterns below.

What this slide describes are not Keycloak project’s official opinion. These were
derived by just my investigation against the latest version of Keycloak (25.0.1).

36© Hitachi, Ltd. 2024. All rights reserved.

Financial-grade API (FAPI) security profiles

• Hardening OAuth 2.0 authorization and OpenID Connect 1.0 authentication
protocol. It is standardized by OpenID Foundation.

37© Hitachi, Ltd. 2024. All rights reserved.

Open Banking using FAPI Security Profile in the world

[UK : OpenBanking]

OpenBanking Financial Grade API (FAPI) Profile

OpenBanking CIBA Profile

[Australia : Consumer Data Right (CDR)]

Consumer Data Right Security Profile

[Brazil : Open Banking Brazil]

Open Banking/Finance Brazil Financial-grade API Security Profile

[Saudi Arabia : SAMA/KSA Open Banking]

OpenBanking Financial Grade API (FAPI) Profile

38© Hitachi, Ltd. 2024. All rights reserved.

Keycloak-supported specifications : OIDC, FAPI

Standardization Body: OpenID Foundation (OIDF)

Specification WG Status

1 OpenID Connect Core 1.0 OIDC Final

2 OpenID Connect Discovery 1.0 OIDC Final

3 OpenID Connect Dynamic Client Registration 1.0 OIDC Final

4 OAuth 2.0 Multiple Response Type Encoding Practices OIDC Final

5 OAuth 2.0 Form Post Response Mode OIDC Final

6 OpenID Connect RP-Initiated Logout 1.0 OIDC Final

7 OpenID Connect Session Management 1.0 OIDC Final

8 OpenID Connect Front-Channel Logout 1.0 OIDC Final

9 OpenID Connect Back-Channel Logout 1.0 OIDC Final

10 OpenID Connect Client Initiated Backchannel Authentication Flow - Core 1.0 MODRNA Final

11 Financial-grade API Security Profile 1.0 - Part 1: Baseline FAPI Final

12 Financial-grade API Security Profile 1.0 - Part 2: Advanced FAPI Final

13 JWT Secured Authorization Response Mode for OAuth 2.0 (JARM) FAPI Final

Certified

39© Hitachi, Ltd. 2024. All rights reserved.

Keycloak-supported specifications : OIDC, FAPI

Standardization Body: OpenID Foundation (OIDF)

Specification WG Status

14 OpenID for Verifiable Credential Issuance OIDC Implementer’s Draft

15 Financial-grade API: Client Initiated Backchannel Authentication Profile FAPI Implementer’s Draft

16 FAPI 2.0 Security Profile FAPI Implementer’s Draft

17 FAPI 2.0 Message Signing FAPI Draft

Passed Conformance Test

Certified

Passed Integration Tests

Passed Conformance Test

“Supporting a specification” does not mean that Keycloak officially supports features of
the specification. Some supports of specifications are treated as “Preview” or
“Experimental” features.
Ex. support for #14 “OpenID for Verifiable Credential Issuance” is treated as

“Experimental” feature by the latest version of Keycloak (25.0.1).

40© Hitachi, Ltd. 2024. All rights reserved.

Keycloak-supported specifications : OIDC

Standardization Body: OpenID Foundation (OIDF)

Specification Conformance Profile Status Version

1 OpenID Connect Core 1.0 Basic OP 2.3.0, 18.0.0

2 OpenID Connect Core 1.0 Implicit OP 2.3.0, 18.0.0

3 OpenID Connect Core 1.0 Hybrid OP 2.3.0, 18.0.0

4 OpenID Connect Core 1.0 Config OP 2.3.0, 18.0.0

5 OpenID Connect Core 1.0 Dynamic OP 2.3.0, 18.0.0

6 OpenID Connect Core 1.0 Form Post OP 18.0.0

7 OpenID Connect Core 1.0 3rd Party-Init OP -

8 OpenID Connect RP-Initiated Logout 1.0 RP-Initiated OP 18.0.0

9 OpenID Connect Session Management 1.0 Session OP 18.0.0

10 OpenID Connect Front-Channel Logout 1.0 Front-Channel OP 18.0.0

11 OpenID Connect Back-Channel Logout 1.0 Back-Channel OP 18.0.0

Not Yet

Certified

Certified

Certified

Certified

Certified

Certified

Certified

Certified

Certified

Certified

41© Hitachi, Ltd. 2024. All rights reserved.

Keycloak-supported specifications : FAPI

Standardization Body: OpenID Foundation (OIDF)

Specification Conformance Profile Status Version

1 FAPI 1.0 - Advanced FAPI Adv. OP w/ MTLS 15.0.2

2 FAPI 1.0 - Advanced FAPI Adv. OP w/ MTLS, PAR 15.0.2

3 FAPI 1.0 - Advanced FAPI Adv. OP w/ Private Key 15.0.2

4 FAPI 1.0 - Advanced FAPI Adv. OP w/ Private Key, PAR 15.0.2

5 FAPI 1.0 - Advanced FAPI Adv. OP w/ MTLS, JARM 15.0.2

6 FAPI 1.0 - Advanced FAPI Adv. OP w/ Private Key, JARM 15.0.2

7 FAPI 1.0 - Advanced FAPI Adv. OP w/ MTLS, PAR, JARM 15.0.2

8 FAPI 1.0 - Advanced FAPI Adv. OP w/ Private Key, PAR, JARM 15.0.2

9 FAPI-CIBA Profile FAPI-CIBA OP poll w/ MTLS 15.0.2

10 FAPI-CIBA Profile FAPI-CIBA OP poll w/ Private Key 15.0.2

11 FAPI-CIBA Profile FAPI-CIBA OP Ping w/ MTLS 15.0.2

12 FAPI-CIBA Profile FAPI-CIBA OP Ping w/ Private Key 15.0.2

Certified

Certified

Certified

Certified

Certified

Certified

Certified

Certified

Certified

Certified

Certified

Certified

42© Hitachi, Ltd. 2024. All rights reserved.

Keycloak-supported specifications : Open Banking

Standardization Body: OpenID Foundation (OIDF)

Specification Conformance Profile Status Version

1 Brazil Open Banking (FAPI 1.0 - Advanced) BR-OB Adv. OP w/ MTLS 15.0.2

2 Brazil Open Banking (FAPI 1.0 - Advanced) BR-OB Adv. OP w/ Private Key 15.0.2

3 Brazil Open Banking (FAPI 1.0 - Advanced) BR-OB Adv. OP w/ MTLS, PAR 15.0.2

4 Brazil Open Banking (FAPI 1.0 - Advanced) BR-OB Adv. OP w/ Private Key, PAR 15.0.2

5 Brazil Open Banking (FAPI 1.0 - Advanced) BR-OB Adv. OP w/ MTLS, JARM 15.0.2

6 Brazil Open Banking (FAPI 1.0 - Advanced) BR-OB Adv. OP w/ Private Key, JARM 15.0.2

7 Brazil Open Banking (FAPI 1.0 - Advanced) BR-OB Adv. OP w/ MTLS, PAR, JARM 15.0.2

8 Brazil Open Banking (FAPI 1.0 - Advanced) BR-OB Adv. OP w/ Private Key, PAR, JARM 15.0.2

9 Brazil Open Banking (FAPI 1.0 - Advanced) BR-OB Adv. OP DCR -

10 Australia CDR (FAPI 1.0 - Advanced) AU-CDR Adv. OP w/ Private Key 15.0.2

11 Australia CDR (FAPI 1.0 - Advanced) AU-CDR Adv. OP w/ Private Key, PAR 15.0.2

Certified

Certified

Certified

Certified

Certified

Certified

Certified

Certified

Certified

Certified

Not Yet

43© Hitachi, Ltd. 2024. All rights reserved.

Keycloak-supported specifications : FAPI, OpenBanking

Standardization Body: OpenID Foundation (OIDF)

Specification Conformance Profile Status Version

1 UK Open Banking (FAPI 1.0 - Advanced) UK-OB Adv. OP w/ MTLS 20.0.0

2 UK Open Banking (FAPI 1.0 - Advanced) UK-OB Adv. OP w/ Private Key 20.0.0

3 FAPI 2.0 Security Profile Second & Message Signing FAPI2SP MTLS + MTLS 23.0.0

4 FAPI 2.0 Security Profile Second & Message Signing FAPI2SP private key + MTLS 23.0.0

5 FAPI 2.0 Security Profile Second & Message Signing FAPI2SP OpenID Connect 23.0.0

6 FAPI 2.0 Security Profile Second & Message Signing FAPI2MS JAR 23.0.0

7 FAPI 2.0 Security Profile Second & Message Signing FAPI2MS JARM 23.0.0

8 Brazil Open Finance (FAPI-BR v2) BR-OF Adv. OP w/ Private Key,

PAR

23.0.1

9 Brazil Open Finance (FAPI-BR v2) BR-OF Adv. OP DCR -

Test Passed

Test Passed

Test Passed

Test Passed

Test Passed

Test Passed

Test Passed

Test Passed

Not Yet

44© Hitachi, Ltd. 2024. All rights reserved.

Keycloak-supported specifications : OAuth2

Standardization Body: Internet Engineering Task Force (IETF)

Specification Status

1 RFC 6749: The OAuth 2.0 Authorization Framework RFC

2 RFC 6750: The OAuth 2.0 Authorization Framework: Bearer Token Usage RFC

3 RFC 7009: OAuth 2.0 Token Revocation RFC

4 RFC 7521: Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants RFC

5 RFC 7523: JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants RFC

6 RFC 7591: OAuth 2.0 Dynamic Client Registration Protocol RFC

7 RFC 7592: OAuth 2.0 Dynamic Client Registration Management Protocol RFC

8 RFC 7636: Proof Key for Code Exchange by OAuth Public Clients RFC

9 RFC 7662: OAuth 2.0 Token Introspection RFC

10 RFC 8414: OAuth 2.0 Authorization Server Metadata RFC

11 RFC 8628: OAuth 2.0 Device Authorization Grant RFC

12 RFC 8693: OAuth 2.0 Token Exchange RFC

13 RFC 8705: OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound Access Tokens RFC

Passed Integration Tests

45© Hitachi, Ltd. 2024. All rights reserved.

Keycloak-supported specifications : OAuth2

Standardization Body: Internet Engineering Task Force (IETF)

Specification Status

14 RFC 9101: The OAuth 2.0 Authorization Framework: JWT-Secured Authorization Request (JAR) RFC

15 RFC 9126: OAuth 2.0 Pushed Authorization Requests RFC

16 RFC 9207: OAuth 2.0 Authorization Server Issuer Identification RFC

17 RFC 9449: Demonstration of Proof-of-Possession at the Application Layer (DPoP) RFC

18 The OAuth 2.1 Authorization Framework Internet Draft

Passed Integration Tests

“Supporting a specification” does not mean that Keycloak officially supports features of
the specification. Some supports of specifications are treated as “Preview” or
“Experimental” features.
Ex. support for #12 “RFC 8693: OAuth 2.0 Token Exchange” and #17 “RFC 9449:

Demonstration of Proof-of-Possession at the Application Layer (DPoP)” are treated
as “Preview” feature by the latest version of Keycloak (25.0.1).

46© Hitachi, Ltd. 2024. All rights reserved.

Keycloak-supported specifications : UMA, SAML, WebAuthn

Standardization Body: Kantara Initiative

Specification Status

1 User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization (version 2.0) Recommendation

2 Federated Authorization for User-Managed Access (UMA) 2.0 Recommendation

Specification Status

1 Security Assertion Markup Language 2.0 (SAML 2.0) Published

Standardization Body: Organization for the Advancement of Structured
Information Standards (OASIS)

Specification Status

1 Web Authentication: An API for accessing Public Key Credentials Level 2 Recommendation

Standardization Body: World Wide Web Consortium (W3C)

Passed Integration Tests

Passed Integration Tests

Passed Integration Tests

Specification Status

1 The Federal Information Processing Standard Publication 140-2 (FIPS 140-2) Published

Standardization Body: U.S. National Institute of Standards and Technology
(NIST) Passed Integration Tests

47© Hitachi, Ltd. 2024. All rights reserved.

Regression Tests for a new version of Keycloak

• Keycloak community activity : OAuth SIG (Special Interest Group)

mainly supports OAuth and its related specifications to Keycloak.

GitHub repository : https://github.com/keycloak/kc-sig-fapi (*1)

CNCF slack channel : #keycloak-oauth-sig

OAuth SIG works on security standards in this talk

(Passkeys, OAuth 2.1, DPoP, OID4VCI, etc.)

• Whenever a new version of Keycloak is released, OAuth SIG runs conformance
tests for all OIDF’s specifications that Keycloak has already supported against it.

• OAuth SIG publishes the conformance test run results:

https://github.com/keycloak/kc-sig-fapi?tab=readme-ov-file#passed-
conformance-tests-per-keycloak-version

https://github.com/keycloak/kc-sig-fapi
https://github.com/keycloak/kc-sig-fapi?tab=readme-ov-file#passed-conformance-tests-per-keycloak-version
https://github.com/keycloak/kc-sig-fapi?tab=readme-ov-file#passed-conformance-tests-per-keycloak-version

48© Hitachi, Ltd. 2024. All rights reserved.

Summary

• By supporting OID4VCI, Keycloak could be used as a Credential Issuer in EU
Digital Identity Wallet ecosystem.

• Keycloak 25 implemented OID4VCI, but its feature is treated as an
experimental feature and have many limitations.

• Keycloak community OAuth SIG continue working on refining OID4VCI support.

• Keycloak supported a lot of security specifications, but we need to take care
that what “supporting a specification” means.

• As for specifications like OIDC and FAPI that their standardization body
provides their conformance tests, Keycloak community OAuth SIG runs
regression tests for them against newly released version of Keycloak.

49© Hitachi, Ltd. 2024. All rights reserved.

Appendix

Specification Standardization

Body

Status Support

Lv. by KC

Conformance

Test exist?

Certificate

Program exist?

Self-Integration

Test Passed?

Conformance

Test Passed?

Certi-

fied?

1 RFC 6749: The OAuth 2.0 Authorization Framework IETF (OAuth WG) RFC Supported - - - -

2 RFC 6750: The OAuth 2.0 Authorization Framework: Bearer Token Usage IETF (OAuth WG) RFC Supported - - - -

3 RFC 7009: OAuth 2.0 Token Revocation IETF (OAuth WG) RFC Supported - - - -

4 RFC 7521: Assertion Framework for OAuth 2.0 Client Authentication and Authorization

Grants

IETF (OAuth WG) RFC Supported - - - -

5 RFC 7523: JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and

Authorization Grants

IETF (OAuth WG) RFC Supported - - - -

6 RFC 7591: OAuth 2.0 Dynamic Client Registration Protocol IETF (OAuth WG) RFC Supported - - - -

7 RFC 7592: OAuth 2.0 Dynamic Client Registration Management Protocol IETF (OAuth WG) RFC Supported - - - -

8 RFC 7636: Proof Key for Code Exchange by OAuth Public Clients IETF (OAuth WG) RFC Supported - - - -

9 RFC 7662: OAuth 2.0 Token Introspection IETF (OAuth WG) RFC Supported - - - -

10 RFC 8414: OAuth 2.0 Authorization Server Metadata IETF (OAuth WG) RFC Supported - - - -

11 RFC 8628: OAuth 2.0 Device Authorization Grant IETF (OAuth WG) RFC Supported - - - -

12 RFC 8693: OAuth 2.0 Token Exchange IETF (OAuth WG) RFC Preview - - - -

13 RFC 8705: OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound Access

Tokens

IETF (OAuth WG) RFC Supported - - - -

14 RFC 9101: The OAuth 2.0 Authorization Framework: JWT-Secured Authorization Request

(JAR)

IETF (OAuth WG) RFC Supported - - - -

15 RFC 9126: OAuth 2.0 Pushed Authorization Requests IETF (OAuth WG) RFC Supported - - - -

16 RFC 9207: OAuth 2.0 Authorization Server Issuer Identification IETF (OAuth WG) RFC Supported - - - -

17 RFC 9449: Demonstration of Proof-of-Possession at the Application Layer (DPoP) IETF (OAuth WG) RFC Preview - - - -

18 The OAuth 2.1 Authorization Framework IETF (OAuth WG) Internet Draft Supported - - - -

50© Hitachi, Ltd. 2024. All rights reserved.

Appendix

Specification Standardization

Body

Status Support Lv.

by KC

Conformance

Test exist?

Certificate

Program exist?

Self-Integration

Test Passed?

Conformance

Test Passed?

Certi-

fied?

19 OpenID Connect Core 1.0 OIDF (OIDC WG) Final Supported

20 OpenID Connect Discovery 1.0 OIDF (OIDC WG) Final Supported

21 OpenID Connect Dynamic Client Registration 1.0 OIDF (OIDC WG) Final Supported

22 OAuth 2.0 Multiple Response Type Encoding Practices OIDF (OIDC WG) Final Supported

23 OAuth 2.0 Form Post Response Mode OIDF (OIDC WG) Final Supported

24 OpenID Connect RP-Initiated Logout 1.0 OIDF (OIDC WG) Final Supported

25 OpenID Connect Session Management 1.0 OIDF (OIDC WG) Final Supported

26 OpenID Connect Front-Channel Logout 1.0 OIDF (OIDC WG) Final Supported

27 OpenID Connect Back-Channel Logout 1.0 OIDF (OIDC WG) Final Supported

28 OpenID for Verifiable Credential Issuance OIDF (OIDC WG) Implementer’s Draft Experimental －(coming soon?) - (coming soon?) - -

29 OpenID Connect Client Initiated Backchannel Authentication Flow - Core 1.0 OIDF (MODRNA WG) Final Supported

30 Financial-grade API Security Profile 1.0 - Part 1: Baseline OIDF (OIDC FAPI) Final Supported

31 Financial-grade API Security Profile 1.0 - Part 2: Advanced OIDF (OIDC FAPI) Final Supported

32 JWT Secured Authorization Response Mode for OAuth 2.0 (JARM) OIDF (OIDC FAPI) Final Supported

33 Financial-grade API: Client Initiated Backchannel Authentication Profile OIDF (OIDC FAPI) Implementer’s Draft Supported

34 FAPI 2.0 Security Profile OIDF (OIDC FAPI) Implementer’s Draft Supported

35 FAPI 2.0 Message Signing OIDF (OIDC FAPI) Draft Supported

36 The Federal Information Processing Standard Publication 140-2 (FIPS 140-2) NIST Published Supported

37 Web Authentication: An API for accessing Public Key Credentials Level 2 W3C Recommendation Supported

38 User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization (version 2.0) Kantara Initiative Recommendation Supported

39 Federated Authorization for User-Managed Access (UMA) 2.0 Kantara Initiative Recommendation Supported

40 Security Assertion Markup Language 2.0 (SAML 2.0) OASIS Published Supported

51© Hitachi, Ltd. 2024. All rights reserved.

Trademarks

• OpenID is a trademark or registered trademark of OpenID Foundation in the
United States and other countries.

• GitHub is a trademark or registered trademark of GitHub, Inc. in the United
States and other countries.

• Red Hat is a trademark or registered trademark of Red Hat, Inc. in the United
States and other countries.

• X is a trademark or registered trademark of X CORP. in the United States and
other countries.

• Facebook is a trademark or registered trademark of Meta Platforms, Inc. in the
United States and other countries.

• Other brand names and product names used in this material are trademarks,
registered trademarks, or trade names of their respective holders.

© Hitachi, Ltd. 2024. All rights reserved.

Takashi Norimatsu

September 19, 2024

Hitachi, Ltd.

OSS Solution Center

END

Keycloak's Updates on Emerging Paradigm of Identity
and Compliance with Security Specifications

52

	スライド 0: Keycloak's Updates on Emerging Paradigm of Identity and Compliance with Security Specifications
	スライド 1: Self Introduction
	スライド 2
	スライド 3: 1. Emerging Paradigm of Identity : OID4VCI
	スライド 4: Verifiable Credentials : OID4VCI
	スライド 5: Verifiable Credentials Data Model v2.0 (*1)
	スライド 6: Verifiable Credentials Data Model v2.0
	スライド 7: Verifiable Credentials
	スライド 8: Verifiable Credentials
	スライド 9: The Current Keycloak’s Support for OID4VCI
	スライド 10: Components for OID4VCI in Keycloak (25.0.0)
	スライド 11: Components for OID4VCI – Signing Service Provider
	スライド 12: Components for OID4VCI – Credential Configuration
	スライド 13: Components for OID4VCI – OID4VCI Protocol Mapper
	スライド 14: Components for OID4VCI – VC (SD-JWT)
	スライド 15: Prerequisites for VC Issuance by Keycloak
	スライド 16: Pre-Authorization Code Flow & Wallet-initiated & Same-device Credential Offer
	スライド 17: Pre-Authorization Code Flow & Wallet-initiated & Same-device Credential Offer
	スライド 18: Pre-Authorization Code Flow & Wallet-initiated & Same-device Credential Offer (1 of 2)
	スライド 19: Pre-Authorization Code Flow & Wallet-initiated & Same-device Credential Offer (2 of 2)
	スライド 20: Authorization Code Flow for VC Issuance
	スライド 21: Authorization Code Flow for VC Issuance
	スライド 22: Authorization Code Flow for VC Issuance
	スライド 23: Pre-Authorization Code Flow & Wallet-initiated & Cross-device Credential Offer
	スライド 24: Pre-Authorization Code Flow & Wallet-initiated & Cross-device Credential Offer
	スライド 25: Pre-Authorization Code Flow & Wallet-initiated & Cross-device Credential Offer
	スライド 26: Pre-Authorization Code Flow & Wallet-initiated & Cross-device Credential Offer (1 of 2)　(KC25)
	スライド 27: Pre-Authorization Code Flow & Wallet-initiated & Cross-device Credential Offer (2 of 2) (KC25)
	スライド 28: Pre-Authorization Code Flow & Wallet-initiated & Cross-device Credential Offer (1 of 2)　(KC26?)
	スライド 29: Roadmap and Resources
	スライド 30: Roadmap and Resources
	スライド 31: The Current Keycloak’s Support for OID4VCI
	スライド 32: 2. Compliance with Security Specifications
	スライド 33: Keycloak-supported specifications
	スライド 34: Definition
	スライド 35: Definition
	スライド 36: Financial-grade API (FAPI) security profiles
	スライド 37: Open Banking using FAPI Security Profile in the world
	スライド 38: Keycloak-supported specifications : OIDC, FAPI
	スライド 39: Keycloak-supported specifications : OIDC, FAPI
	スライド 40: Keycloak-supported specifications : OIDC
	スライド 41: Keycloak-supported specifications : FAPI
	スライド 42: Keycloak-supported specifications : Open Banking
	スライド 43: Keycloak-supported specifications : FAPI, OpenBanking
	スライド 44: Keycloak-supported specifications : OAuth2
	スライド 45: Keycloak-supported specifications : OAuth2
	スライド 46: Keycloak-supported specifications : UMA, SAML, WebAuthn
	スライド 47: Regression Tests for a new version of Keycloak
	スライド 48: Summary
	スライド 49: Appendix
	スライド 50: Appendix
	スライド 51: Trademarks
	スライド 52
	スライド 53

