
Extending
KEYCLOAK
for All Your Identity Use
Cases

https://github.com/p2-inc

Keycloak extensions

Open source

Founded as a
Keycloak Consulting

Company

2020

Managed service
offering launched

Hosted offering
launched

SLA enacted

2021 2022 2023

Who is Phase Two?

Keycloak extension, support and hosting.
Accelerate time-to-market and enterprise adoption for modern SaaS use cases.

Who am I?

i. Serial entrepreneur (since 1996)

ii. Java user since 1.1 (1997)

iii. Keycloak user since just before v3 (2017)

iv. Founder/CEO Phase Two (2020)

What? Why?

● Keycloak is very mature, and handles 80% of use cases really well.

● For everything else, it is built as a set of Service Provider

Interfaces (SPIs) and implementations that allow excellent

configuration and programmatic extensibility

● Extensions are the recommended mechanism to achieve

custom functionality that will not (or not soon) make it into

Keycloak. “Custom” can mean:

○ Highly specific to me / my company

○ Something that may have broad appeal

But…
KC-SERVICES0047: events

(io.phasetwo.keycloak.resources.WebhooksResourceProviderFactory) is
implementing the internal SPI realm-restapi-extension.
This SPI is internal and may change without notice

It depends…
This hasn’t been an issue, outside of UI and some other minor interface changes…
● But it means you do need to validate each new version
● Decide on your tolerance for risk based on HOW MUCH KEYCLOAK USES IT

INTERNALLY
○ E.g. Authenticator won't change because they use it everywhere to

implement flows
○ E.g. Admin UI extensions might change, because they don't use it to build

the admin UI

Audience and Scope
Level: Beginner

Meant to answer the questions:
 “I need to add to or extend Keycloak.
 What is available? How do I get started?”

Sections:
1. Build setup
2. Lifecycle of an extension
3. Configuration
4. Testing
5. Live example

Build setup
1. The pom.xml file

a. Use a BOM

b. Annotation processors (lombok and auto-service)

c. Adding version information to the ServerInfoAwareProviderFactory

d. Testcontainers

e. Building a fat jar

Build setup: Use a BOM

● Gives us versions and

dependencies that

match the Keycloak

version

● No need to specify

versions

● Thanks Niko!

Build setup: Annotation processors

Build setup: Annotation processors

● Auto-service

○ SPI manifest files are automatic

● Lombok

○ No more setting up logger for each class

○ Lots of other goodies for your data/record classes

Build setup: Add metadata

● Adds project, version,

and git sha to a

generated class

● Easy to use when

building your

ServerInfoAwareProvide

rFactory

Build setup: Testcontainers

● Testcontainers

implementation specific

to Keycloak

● JUnit support

● Ability to load resolved

artifacts from Maven

Build setup: Building a fat jar

To fat jar or not to fat jar?

● Depends on how you are

packaging, and other if there are

other extensions

● TIP: If you’re building a project with

multiple extensions with

overlapping dependencies, use the

"old" maven EAR plugin to collect

your dependencies

Lifecycle of an extension
● Every extension implements ProviderFactory and Provider

○ ProviderFactory sets up the Provider (classic factory pattern)

○ Provider does the thing!

Lifecycle of an extension
Important methods:

● void init(Config.Scope config)

○ Only called once when the factory is first created

● void postInit(KeycloakSessionFactory factory)

○ Called after all provider factories have been initialized

■ E.g. Use it to create new, default authentication flows

■ E.g. Add your roles in all realms

● T create(KeycloakSession session)

○ Makes the Provider!

● void close()

○ Remember to clean up before Keycloak shuts down

Lifecycle of an extension
● 2 additional interfaces

○ ConfiguredProvider - for many extensions that can be configured by the Keycloak

UI

○ ServerInfoAwareProviderFactory - can show additional information about

extension in Provider Info page in the Admin UI

Configuration
● How can I pass configuration information to my extension?

○ Keycloak’s answer: “Let’s make it as confusing as humanly possible!”

○ The format:

■ KC_{SPI_NAME}_{PROVIDER_ID}_{VARIABLE_NAME}

○ Example:

■ KC_SPI_AUTHENTICATOR_CUSTOM_USERNAME_PASSWORD_FORM_SELF_R

EGISTRATION_URL

○ Getting it out of the Config.Scope object

■ scope.get(“selfRegistrationUrl”)

Testing

● Keycloak way:

○ org.keycloak.testsuite.KeycloakServer

○ Arquillian

● Better way for extensions:

○ Testcontainers https://github.com/dasniko/testcontainers-keycloak

○ Cypress https://github.com/wimdeblauwe/testcontainers-cypress

https://github.com/dasniko/testcontainers-keycloak
https://github.com/wimdeblauwe/testcontainers-cypress

Testing: Testcontainers
● Create a Keycloak instance:

Testing: Testcontainers
● Use dependencies defined in your pom:

Testing: Testcontainers
● Start the container, and get a Keycloak Admin API client

What can I do? Where to start?

????

A real example

● We’re going to build a generally useful Webhooks extension to the Keycloak

event system (like Stripe and most modern APIs)

● In the process, we will use Keycloak extension SPIs to implement features:

○ JPA entities so Webhook definitions can be persisted

○ Custom REST resources to create an API for managing Webhook

subscriptions

○ Event listener to capture Keycloak events and dispatch them to Webhook

endpoints

○ [BONUS] Admin UI to create, manage and view the Webhooks

● (I’m going to go a bit fast, as all of the code is in our open source extensions)

JPA entities

● Store entities in the database like Keycloak

○ Create a liquibase migration script

○ Create your JPA entities

○ Create the JpaEntityProvider implementation and register your entities

and migration script

○ Create Model classes to wrap the entities

● [Bonus] Creating our own SPI so that we can provide a convenient/protected

way of accessing Model classes

JPA entities

● Create a liquibase migration script

○ Put it in src/main/resources/META-INF so it gets packaged

JPA entities

● Create your JPA entities

JPA entities

● Create the JpaEntityProvider implementation and register your entities and

migration script

JPA entities

● Create Model interfaces and implementations to wrap the entities

JPA entities

● Bonus: Creating our own SPI so that we can provide a convenient/protected

way of accessing Model classes

Custom REST resources

● Implement RealmResourceProvider to provide an API for Webhook

subscriptions

○ The getResource() method returns a standard JAX-RS implementation

○ We need to remember to handle access control (Keycloak doesn’t do it for

us)

○ Make sure we’re giving auditability of our changes by adding Admin

events

Custom REST resources

● The getResource() method returns a standard JAX-RS implementation

Custom REST resources
● We need to remember to handle access control (Keycloak doesn’t do it for us)

● Then we can do easy access control checks like:

Custom REST resources

● Make sure we’re giving auditability of our changes by adding Admin events

Event listener

● Capture Keycloak events and dispatch them to Webhook endpoints

○ Implement an EventListenerProvider

Bonus: Admin UI
● Create, manage and view the Webhooks

● Using the “new” Java-based Admin UI extension mechanism

○ Note that this is essentially a copy of of how user storage providers were

configured, but “generalized”

● This requires us to use/implement UiPageProviderFactory / ComponentFactory

○ There will be duplicative WebhookModels and ComponentModels, as this

extension relies on components for storage

■ This is done via the preRemove, onCreate and onUpdate methods

■ And we have to go back into our REST resources and update the

ComponentModels

■ And for people who were using this before, we have to migrate

■ And…. (sigh)

Bonus: Admin UI
● This uses the ConfiguredProvider interface mentioned earlier that allows us to

specify properties and their types, attributes and other metadata, so that a UI

can be automatically generated.

Demo

● Show Provider Info

● Enable event listener

● Create a Webhook

● Trigger an event

● Success!

Special thanks…

● Our community contributors

● The Keycloak maintainers, authors and contributors

● @dteleguin for beercloak

● @thomasdarimont for Awesome Keycloak and so many excellent examples

● @sventorben for his extensions and another talk that inspired this

● @dasniko for patience, examples, general awesomeness

● @adorsys for this great event

● The whole Keycloak community!

Questions?

More resources:

● Homepage: https://phasetwo.io

● GitHub: https://github.com/p2-inc

● Webhooks / Events extension: https://github.com/p2-inc/keycloak-events

https://rb.gy/tfde4g

https://phasetwo.io
https://github.com/p2-inc
https://github.com/p2-inc/keycloak-events

