
Token
Exchange
Keycloak's Secret Weapon for Platforms
KeyConf25

Amsterdam, 28.08.2025

About me

sven-torben.janus@conciso.de

@sventorben

Sven-Torben
Janus

Partner,
Principal Architect

Basic Platform
Security Model

Understanding
Platform Planes

Control Plane:
Orchestrates the Data Plane; manages configs,
deployments, and routing of service traffic.

Data Plane:
Handles user-facing traffic and business logic;
executes requests but doesn’t manage infrastructure.

Management Plane:
Provides administrative control over the entire
platform; used by operators, SREs, and security teams.

Examples of Platform Planes

Control
Plane

Management
Plane

Data
Plane

Cloud Providers IAM, Policy
Enforcement

API Gateway,
Service Mesh

Compute &
Storage

Service Meshes
Istio Pilot,

Consul Control
Servers

Authentication &
Service Discovery
(Keycloak, SPIRE)

Sidecar Proxies,
API Traffic (Envoy,

Linkerd proxy)

Enterprise SaaS
Tenant

Management,
Admin APIs

Identity
Federation, API
Security Policies

Tenant-Specific
Applications &

Data Stores

• Isolated privileges
Each plane gets only the access it needs.

• Reduced attack surface
Compromising a Data Plane service
won’t give control over the platform.

• Clear trust boundaries
• Management → Control
• Control → Data
• Data → Management
• Data → Control
• Control → Management
• …

• Scoped tokens with Keycloak
Use Token Exchange to grant
least-privilege access per plane.

Security Through
Plane Separation

The Challenge of Scalable Auth

User tokens leak too far

Tokens issued to frontends often reach backend
services uncontrolled

Uncontrolled client access

Static credentials and hardcoded secrets
increase exposure

Services lack identity isolation

No clear separation of scopes and audiences

Common Delegation
Approaches

Using Client Credentials
Grant (Service Account)

This issues a token for the
backend service but doesn’t
retain the user’s identity or
permissions.

Stitching together
methods manually

This is cumbersome and
error-prone, leading to
security vulnerabilities and
poor access control.

Forwarding the user's access
token (Poor Man’s Delegation)

This exposes scopes that
backend services shouldn't
have access to.

Poor-Man’s Delegation & Why It Fails

This breaks
security principles
like least privilege
and separation of
concerns.

{

 "iss": "https://.../realms/apixion",

 "azp": "frontend",

 "sub": "developer-123@apixion",

 "aud": ["frontend","backend",

 "some-service"],

 "realm_access":{"roles":["user"]},

 "resource_access": {

 "frontend":{"roles":["user"]},

 "backend":{"roles":["admin"]},

 "some-service":{"roles":["viewer"]}

 }

}

Why is forwarding tokens a bad idea?

Over-privileged tokens

Token can be used across multiple
backend services, even if they don’t
all need the same level of access.

Security risks

If a single backend service is
compromised, an attacker could use
the forwarded token to access
multiple other services.

No clear identity tracking

Difficult to distinguish by which
service a request was made.

Difficult auditing

Since the same token is passed
around, logging mechanisms fail to
capture true request origins.

Token Exchange

Introducing Token Exchange RFC8693

User-to-Service Token
Exchange

Securely exchange a user
token for a backend

service token.

Centralized API Token
Management

Use a centrally managed
API token to call external

APIs.

Impersonation &
Delegation

Act on behalf of another
user or service, if

permitted.

Token Exchange – How It Works

Token Exchange in
Keycloak

Restricting Full Scope for Clients

{

 "azp": "frontend",

 "sub": "developer-123@apixion",

 "aud": ["frontend"],

 "realm_access":{"roles":["user"]},

 "resource_access": {

 "frontend":{"roles":["user"]},

 },

 "iss": "https://.../realms/apixion"

}

Configuring Token Exchange

Token Exchange Version Configuration Requirements Notes

Legacy Token

Exchange (v1)

Must be enabled:

- token-exchange

- admin-fine-grained-authz (FGAP v1)

• Preview feature not enabled by

default

• quite complex to configure

Standard Token

Exchange (v2)

Enabled by default since Keycloak 26.2;

just enable the toggle in the client’s settings

• Simplified configuration

• compliant with RFC 8693

• lacks support for external tokens

Assigning Permissions (v1)

Assigning Permissions (v1)

Assigning Permissions (v1)

Enable Standard Token Exchange (v2)

Performing a Token Exchange

POST /realms/apixion/protocol/openid-connect/token

HTTP/1.1

Host: keycloak.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic BASE64(client_id:client_secret)

grant_type=urn:ietf:params:oauth:grant-type:token-exchange

&subject_token=eyJhbGciOiJIUzI1NiIsInR5cCI...

&subject_token_type=urn:ietf:params:oauth:token-type:access_token

&requested_token_type=urn:ietf:params:oauth:token-type:access_token

&audience=some-backend-service

Token Exchange Response and Token
Validation
{

 "iss": "https://.../realms/apixion",

 "azp": "portal",

 "sub": "developer-123@apixion",

 "aud": ["some-backend-service"],

 "realm_access": { "roles": ["user"] },

 "resource_access": {

 "some-backend-service": { "roles": ["viewer"] },

 }

}

Token Exchange v1 vs v2

Capability
Token Exchange v1

(Preview, pre-26.2)

Standard Token Exchange v2

(Default, 26.2+)

Feature flag required Must be enabled manually Enabled by default

Fine-grained permissions Required for security Built-in per client

Audience switching Fully flexible (internal & external) Limited (only downscoping)

Internal Internal Fully supported Fully supported

Internal → External Supported Not supported

External → Internal Supported
Experimental, needs manual

activation per feature flag

Complexity High (AuthZ policies, mappings) Simple (UI-based config)

Use cases Advanced B2B, federation, SaaS Microservices, platform-internal

Status Deprecated Recommended default

Observability

Audit Logs

Monitoring – Logging
2025-02-28 23:10:15,414 WARN [org.keycloak.events] (executor-thread-3)

 type="TOKEN_EXCHANGE_ERROR",

 realmId="c6311f0b-e87a-423c-84e2-74f2a8618b40", realmName="apixion",

 clientId="frontend", userId="null", ipAddress="172.18.0.1",

 error="not_allowed", reason="client not allowed to exchange to audience",

 auth_method="token_exchange",

 audience="backend",

 grant_type="urn:ietf:params:oauth:grant-type:token-exchange",

 client_auth_method="client-secret"

2025-02-28 23:10:57,757 INFO [org.keycloak.events] (executor-thread-15)

 type="TOKEN_EXCHANGE" ...

Environment variables to visualize successful token exchanges:

KC_SPI_EVENTS_LISTENER_JBOSS_LOGGING_SUCCESS_LEVEL=info

KC_SPI_EVENTS_LISTENER_JBOSS_LOGGING_ERROR_LEVEL=warn

Monitoring – Event Metrics
curl -s https://keycloak/metrics

| grep 'event="token_exchange"'

keycloak_user_events_total{

 client_id="portal",

 error="",

 event="token_exchange",

 idp="",

 realm="apixion"} 15422.0

keycloak_user_events_total{

 client_id="portal",

 error="not_allowed",

 event="token_exchange",

 idp="",

 realm="apixion"} 38.0

http://localhost:9000/metrics

Takeaways

Best Practices on Platform-Level

Monitor and Audit
Token Usage

Regularly inspect logs and
metrics for unexpected
token exchange requests
to detect misconfigurations
or security threats

Enforce Fine-Grained
Permissions

Always configure strict
Token Exchange policies
per client. Do not allow
unrestricted token
exchange.

Disable Full Scope for
Clients

Ensure clients/services only
get the minimal scopes
they need, preventing token
misuse.

Establish Clear Trust
Boundaries

If your platform has Planes,
define explicit trust
relationships and enforce
separation of concerns.

Limit Token Exchange
Availability

Not all clients should be
able to exchange tokens—
restrict it to approved
services only via Keycloak
permissions

Use Audience
Restrictions

Tokens should always have
specific target audiences
to prevent cross-service
misuse.

Final Thoughts

Why Token
Exchange is Key to
Secure Platforms

Token Exchange is critical
for modern platforms

It prevents Poor-Man’s
Delegation

It enforces trust and
separation in a platform

It strengthens
microservices, API
security, and external
integrations

Q&A – Let’s Discuss

Join Our Team

	Start
	Slide 1: Token Exchange
	Slide 2: About me
	Slide 3
	Slide 4: Understanding Platform Planes
	Slide 5: Examples of Platform Planes
	Slide 6: Security Through Plane Separation
	Slide 7: The Challenge of Scalable Auth
	Slide 8: Common Delegation Approaches
	Slide 9: Poor-Man’s Delegation & Why It Fails
	Slide 10: Why is forwarding tokens a bad idea?
	Slide 11
	Slide 12: Introducing Token Exchange RFC8693
	Slide 13: Token Exchange – How It Works
	Slide 14
	Slide 15: Restricting Full Scope for Clients
	Slide 16: Configuring Token Exchange
	Slide 17: Assigning Permissions (v1)
	Slide 18: Assigning Permissions (v1)
	Slide 19: Assigning Permissions (v1)
	Slide 20: Enable Standard Token Exchange (v2)
	Slide 21: Performing a Token Exchange
	Slide 22: Token Exchange Response and Token Validation
	Slide 23: Token Exchange v1 vs v2
	Slide 24
	Slide 25: Audit Logs
	Slide 26: Monitoring – Logging
	Slide 27: Monitoring – Event Metrics
	Slide 28
	Slide 29: Best Practices on Platform-Level
	Slide 30: Final Thoughts
	Slide 31: Q&A – Let’s Discuss
	Slide 32: Join Our Team

