
Graph-Driven Audits for

A Deep Dive with



Do you really know who can access what?

● Hidden inheritance
group memberships, composite roles, nested permissions

● External identity providers
complex trust relationships, often hard to track

● Authentication workflows
flexible but create blind spots in security review

● Scaling issues
manual audits don’t scale with multi-realm, multi-client setups

Security teams lack a holistic view of "Who can access what?"

2



Cartography’s Journey

3



Cartography in 1 slide

● Ingestion from provider 
APIs

● Modeling in a graph
● Querying the graph using 

the Cypher language
● Bonus: Drift detection

“BloodHound for Cloud”

4



Use cases

● Drift detection / compliance
● Access management
● Vulnerability management
● Asset inventory
● Incident response
● Log enrichment
● Data / secrets lineage

5



Technical Architecture

● Modular Python architecture
● Extensible with custom modules
● Global or per-module execution
● Simple deployment with Docker
● Easily integrates with any 

orchestrator
● Visibility through Neo4j
● Successive runs, no continuous 

monitoring

6



How to with Keycloak

● Clone the repository
● Register an Application in 

Keycloak
● Configure secrets & URLs (env 

vars / parameters)
● Run Cartography against 

Keycloak
● Explore the graph (Neo4j 

browser / Cypher queries)

7



Understanding Authentication Flows in Keycloak

Two types of relations:

● Composition links (black) 
→ native Keycloak structure.

● Execution links (orange) 
→ computed by Cartography

Objectives:

● Detect unreachable executions.
● Identify flows missing critical steps
● Consistency across realms

8



Visualizing Users in Cartography

● Users are modeled as nodes
● Relations to groups, roles, are 

explicit
● External IdPs and optional 

scopes are captured
● Graph view could reveals 

hidden memberships and 
privileges

9



Flattening Inheritance to Reveal Effective Access

● Composite roles & subgroups 
flattened
Hidden inheritance is resolved into explicit 
relationships.

● Scope propagation
Scopes assigned to roles and groups are 
propagated to users.

● Effective access visibility
We can answer precisely: “Which user can 
access which scope?”

10



Beyond Keycloak: External Identity Integration

● Ingest identities from 
multiple providers (e.g., 
GitHub)

● Cross-check group and role 
consistency

● Propagate memberships

● Unified graph view of trust 
relationships

11



Log ingestion: from theory to reality

Bridging theory and reality:

● What a user can do
● What a user has done

Log and event ingestion:

● Access logs
● Network logs
● Application events

POC in progress for AWS CloudTrail

12



First steps toward an ontology

A lightweight ontology:

● Cross-domain concepts
● Standardized relationships

Objectives:

● Share knowledge across 
domains

● Simplify queries
● Facilitate integration



Bonus: AI fancy stuff

14



Bonus: more AI for buzz

15



Thank you for your attention

Reach us on GitHub and Slack:

www.cartography.dev

Contact me on:

https://github.com/jychp 

https://x.com/jychp_fr 

https://jychp.medium.com 

http://www.cartography.dev
https://github.com/jychp
https://x.com/jychp_fr
https://jychp.medium.com

